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1. i.<. ...Oi^OOixUA 

1:1 L/.e yeari since 1945 chcre has been much interest in eicctro-

:..av.ie:ic-uava tr^n^^ission lines lonzied of various configurations of strip 

conductors. A general cross-sectional view of a strip conductor trans-

r.rissior. line is shown in Figure 1. If y e^, the configuration is called 

^ •..-.icrostrip line. To eliminate confusion, it is sor.ietimes necessary to 

distinguish between the case vhen b = cc and when b is finite. This 

distinction is r.ade by using the terms open niicrostrip and shielded 

v.ricrcstrip. When e, = , th.e transmission line is called a stripline. 

The shielded micros trip line reduces to the stripline as either a -• 0 

or s. —' 2.^. 

Because of its simplicity of fabrication, the micrcstrip-type 

transmission line is becoming increasingly popular in both the microwave 

community and the computer industry. Most known analytical solutions for 

the microstrip line assume that the mode of propagation resembles the TZM 

or transmission line mode. The TEM mode assumption reduces the analysis 

of the microstrip line to a two-dimensional electrostatic fields problem 

in th- x-j plane. The electrostatic problem has been solved by methods 

such as conformai mapping (1), image theory (2), the relaxation method 

(3), and the variational principle (4). Although the TEM mode cannot 

exist on tr.e microstrip line (5, 6), the results of such an analysis to 

determine the transmission line parameters agree well with experimental 

m.easure.tents at low frequencies. At microwave frequencies, properties of 

the ..ctu_l microstrip mode such as dispersion and excitation of surface 

waves cannot be explained by a TEM mode analysis. Recently, the dispersive 
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oj; u.ic J/cz ;;;icrj;icrip ana snî iLcc iMcrosurip .Inus have 

bv.^r. 6:uci_c in detail by Dealin^cr (7) and by Zysrnan and Varon (6), 

rcj/cccivaly. These studieo do noe as s u:r.e che TZK zode. Denlinger 

solved an integral equation nu:.ierically for cne propagation conetanc, 

h (.:) J oi the zicrostrip line. ^ pair of coupled hozo^sneous Freehold 

solved numerically for k (ii) 
y 

by Zyszan and Varon. 

Lgh the field analysis of the actual microstrip z^de has been 

(6, 7, S), there seezs zo be very little useful information 

fiel^o of uhe aieroszrip line. The question of whether une actual fields 

of uhe r.:icroscrip resenible the TEM mode has not been answered. 

The open T.icrojtrip transmission line is known excite surface 

waves (9, IC). However, there seems to be doubt as zo just which surface 

wave modes are excited. The micros crip line is a eraveling wave source 

since uhe propagation constant, k_^(„), is much greater than zero. This 

means chat the separation equations of the familiar two-dimensional surfac 

wave :..odc.s must be changed to include the effect of propagation in the y 

direction. The propagation properties of the surface waves associated 

with =he micros trip line are not clearly understood. 

The form of the longitudinal component of current, I^, on the micro-

scrip is known (7, 11). Unless the microstrip is formed of insulazed 

par-llel filaments % there must be a transverse z-directed component of 

curren: (6). However, it is expected that the transverse component of 

c-rrens ooes noc seriously affecc ul.c micruscrip fields (7). I'lie cffcCu 

of- assuming = 0 will be considered later. 
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purpose ci Lhis v/o.k is to acter.;pi uo fill in soma of zhc cissing 

:y.co.-y o: n.icros crip cc^ns-isoion line. Since the longitudinal 

inc cf current on che micros crip is known and the cransverse 

; can usually be ne^lecced, ic is sufficient to determine the tv;o-

lonal Green's funccion for che microstrio. The Green's function 

acre acsc che fields due co a traveling wave line source in free 

—, -jky 

space c : pin.scr curircnc density ^iven by J = "a^c (::- d)e ^ . The 

i.; i ci\>:.. r i p pr..;Ki;-,a:.iv>n cc,.,.: ta. .L , k , w i 11 :)e considered luiMv/n (7 , u) . it 

is v^lid CO place the traveling wave source in free space rather than on 

an accual conductor because the fields radiated will be the same in either 

case, provided the currenc densicy is correct (12). 

ccmpiece sec of source-free normal modes of the boundary value problem. 

The open m.icrostrip is a singular Sturm-Liouville boundary value problem 

in the x direccicn. As such, the tocal fields must be expanded in a 

ciscrece surface wave spectrum plus a continuous spectrum. The continuous 

sp^c^r^m pare of the fields can be found, with much numerical work, by 

ii-cegral transform methods (6, 7). Since the analysis used in this work 

does no : seem to shed much light on the continuous spectrum, only the 

surface wave spectrum for the open micros trip will be considered in 

detail. The discrece spectrum of the open microstrip is very important 

in ics own right because it changes radically with frequency. 

The Green's function for the strioline is found essentially for the 

yuroose of checking the results that are found for the micros trio line. 



www.manaraa.com

c-Cà wi.i be shewn to be transverse r.agnetic to y (TX ) . 

= -A _ e 5 the T.-l solution will recuc 
• o y 

to tr.e 

^ V « « ^ \ * Wk —— * ^ ̂ w W V* 

his work, block letters \.'i-l indicaue phasor quantities. 

;o convert tne onasors over to tne real 

i-us, :.he usual notation lor real tine tieius is a scrip: .ecter. 

notations are relatea by, for example, o(x,y,2,t) = ZeZ(%,y,z)e^"^. 

;s CO be used are the rationalized MKSC system of units. 
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'..'c Lû find una fia-Co in un e ĉripline configuration sho'./n in 

yicujc 2. Tau cun be foniiulauod in frca sdccu in tcnr.s of an 

on the x-a:-:is nnd point in the -r or - y cirection. in 

curr^n:, io X = Au . Since B = 7 x A, B =0 and the fioles :-u3t be TM . 
y y y 

"ne fields between the cv;o perfectly-conducting plates can be found 

in tunub of a su.: of TM olus TZ , TM olus TE , or ÎM olus TE source-
2 ' 2 X • X y • y 

free normal codes because these three sees of modes each form a complete 

seo (13). Since the TE^ modes are not excited by the assumed source, the 

T'.\ formulation of :he oroble.n is the easiest. 
y 

The procedure is to su:?, the T.-l_ modes chat propagate in the -r and 

- z direction. The sum will inc.uce cutoff modes. From Harrington (14), 

the ih fields are related to a wave function U by 
y 

(-^2+ = 0 

y 

(1) 

y - ° ' ' y 

Gy°z = 

oyox 

i 
y  o  ' 0 0  

s . The boundary conditions lilub U UC ...CL. 

a: zhe conduczina Dlate surfaces are H = E = E =0. Suitable sourc 
* X % y 

"srr 1 J- r-T- ? ."i -, 1-.3 r 1 
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y -V 
(2) 

^ 3 — 3 3 

•') 

is a solution ûf the Hcl^holtz ûcuation, 

- u, so l::o sepcr-tion equation is 

" S - Yn = (3) 

Thi çroeodurû of expanding v i:: tor:.:s of is outlined by Harring-

- ('"" 

-= Z (4) 

n-i 

continuous et z = 0. Using Equation 1, this requires that 

or ecui'/alently that Ù' = = Ù. The source condition at 

(:•: - d)e = L̂ ' 
' x ' z -Q  

(5) 

;ing icuacions i, 2 ,  4, and 5, w e  havi 

Ô (:•: c) 
M 1. n=l 

(6)  

be zultip^ied cy sin anc integrated term by tci— 

= 0 to = b (15). This results in 

>in 

V O 
(7) 

; ion 4.  

J  =  e  
- I K  y  "  si:  

y r 
sin 

n-i  
D 

' n 

(£) 
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= ./(T 
V 

Ù 
.i%n llCLl IS 

"uacioi .tiicn or ceccy 

SUDSti -cuacio: 

_v.:o uour con i 

L.:3 urccn s ûncuiùn lor ID 1 

:ior. anc o rec.uccs :IS cùùve 

;V.O C C . iv.ûce ilci have the sar-.c transversa 

cnar; 2 = u anc = d (13), 

l-C iOSi u i- in tae rorni 

- = - v_Pix,z/e (9) 

: j  i s  the potential of a static line charge becween two 

?ro:Ti Equation 1, 

J 
(10) 

Co.noar; i_i- aau j-unis anc iO yie-c< 

c  sin : z ! 

(x,z) = /r^ Z 

0 n-. 

(11) 

tna continuity equation give the char.G density 

y " .J 

joJ 
- d)ù(z)/̂ . 

0, e static charge density is found to be 

= c (:•: c)ô (z)/u 
'1 o> 
.--V 

function, Gj is the potential due to a unit line 
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V — A * ^ W* 4» ^ - » VL SK* W ^ I :^ut (16). 

su^ :r.3 â ove .̂•:,, r.cce analysis lor izr.e scr-piir.o 

be used as a basii to che c.k I a lier results. 
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:Y. GSJ2X s FUNCTÏCX FOI T:j2 SLIHLDED LI::I 

duJ ;..loro^-riv conJ.-ura^iùn co bc a^Llyzcc is bncwA ir. 

rccjo^ fer u cos k y du^ezdezcc in thi currcjit 
^ y  

* ^ L» \ »'• M ^ M imJ ' .coDc cviccnc laccr. -n uo xornxiauo 

tr-icrostrip vcu-c. eicizacc.y prove zruitlcss, except in 

y 
G. T— = 0, Sorr^r.erfeld (17) hca 

cy 

-..et t.-.ûre c:.nnoc DO a TX solution oecause tne ciĉ ectric siao Doundarv 
y 

conciiuicni recuire a component of A to be transverse to the n.icrostrip. 

By a^su-in- a component of T^in the z direction, cae source problem. 

could probably be for.r.aliy solved by a Fourier transform analysis (6). 

However; tne -\euhod of solution in this work will be to sum the source-

' i L  C'.IU T-'l iT.OCicŜ  
X 

before beginning the analysis, so:.-,; of the theory of uniform wave-

ies m^st be presented. The tneory outlined below is covered in 

.il by Collin (13). Wich the assumed cos k y dependence in it 
y 

. larer be shown that perfectly conducting walls in the y = 

icà, m = 1,2)3 can be placed along the micros trip line without 

.ng any effect on the fields. In fact, the field analysis will 

::e eo considering an inhomogeneously filled rectangular waveguide 

guide 

are confined co only Td ano ÏM modes. However, an aroitrarv iiei.d in 

rhe slab guide can be represenaed as an infinite series over the normal 

modes (13). The notation for the n" normal mode fields will be 
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X 

Q. = 00 

<2 

I ) 

X
 II o
. 

' J « a Ô (x - d) 6 (z) cos k y 

iil i m mmw 
&= m 

Figure 3. The shielded microstrip 
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00 
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y 

y • - ff/ k 

Figure 4. Inhomogeneously filled waveguide 
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"È- = (e + ? 
n n — zn 

G?.+ 

(15) 

where 

^ = ê^Cxjy) = the modal transverse electric field (16) 

h^ = lî^(x,y) = the modal transverse magnetic field (17) 

? = "ê* (x.y) = the modal axial electric field (18) 
zn zn 

"ÏT ̂  = TT ̂ (x,y) = the modal axial magnetic field (19) 

In Equation 15, it is assumed that the normal mode fields are normalized 

such that 

^1 b 

J \ = n ̂n x"Gn^S;dx dy = 1 (20) 

-y^ 0 

where y^ = n/ky. The modes are orthogonal in the sense that 

rr T X17 'ïTda = 0 n m (21) 
"g«J n m z 

If one mode in Equation 21 is TE^ and one is TM^, then Equation 21 holds 

when n = m. The fields radiated in the + and - z direction by the micro-

strip are represented as 

= 2 a E^ 

(22) 

= Z a "5^ 

where the sum is over both the TE and TM normal modes. The coeffi-
X X 

cients, a^, are found by Collin (13) through an application of the 

Lorentz reciprocity principle as 
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1 5  

. ^ . 1 ̂ 1 b 

a = - ô" fj-E dv = - -T r r r J'E dxdydz (23) 
n 2 J n 2_| J Jq n 

-^1 

The conducting walls at y = + n/k^ are needed in the derivation of 

Equation 23. To eliminate some confusion, the microstrip fields will be 

partitioned into a TE^ part and a TM^ part. All this means is that the 

sums in Equation 22 will be found in two parts. The total field is the 

sum of the TE part and the TM part. 
X X 

A. TE Fields 
X 

The TE^ fields are related to a wave function by 

1 ^ 
V ST "yh ° 557 (24) 

E H 
zh By zh j oxBz 

2 2 
where the subscript h is used to indicate TE^ fields and k = cu |j,^e(x). 

The wave function for the n^^ mode must be chosen so that the fields meet 

the correct boundary conditions at the dielectric interface and on the 

conductor surface. The required boundary conditions are continuity of 

E , E J H , and H at x = a and E , , = 0 on the conductor surfaces, 
y' z' y' z tangential 

The suitable wave function for the + wave is (14) 

—p sint L 

*hn "n ^sinf^a n^' y' 

(25) 
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where 

1, x>a 

=• 'o, x<a (ZG) 

fZ + - pZ = kj = uFs,p (27) 
n y • n 1 1 o 

+ kf - pZ = k? . u)̂ e (28) 
n y • n o 

f cot f a " - t cot t L (29) 
n n n n 

L = b - a (30) 

The meaning of u(x-a), in this work, is symbolic in the sense that 

derivatives of functions involving u(x-a) will not be taken at x = a. The 

boundary conditions at x = a will automatically be met by this procedure. 

We need consider only the + wave in the following analysis; omitting 

the + superscript should not cause any confusion. Putting Equation 25 

into Equation 24 gives the TE^ modal fields as 

®xhn = » (31) 

^hn = Pn^hn O?) 

^zh„ ° • S V (33) 

\hn = jir ("^ V (34) 

C k sink y sint L U K sink y sint L 

Vn " -'sinA 

- P z 
- t^cost^(b-x)u(x-a)}e " (35) 

PC sint L 

- %—f^cosf x[l-u(x-a)] H ^ 
z^hn ioDu. ""sinf a 'nT^^^n" 

no n 

-J- /. 
- t^cost^(b-x)u(x-a)}cosk^ye (36) 
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Note that E , and H , are zero at y • + rr/k . From Equations 31, 32, 34 
zhn yhn y 

35, and 15, we have 

"tm ° n.® •hn̂ y 

C k sink y sint L 

2-Z 2L, { "—£ cosf x[l-u(x-a)]-t cost (b-x)u(x-a)} 
juu sinf an n n n 

0 n 

(38) 

For Equation 20 to be valid, is chosen so that 

_ 1, n=m 

" 'm. = 'o. nA. 

In Appendix A, the integration indicated in Equation 39 is performed and 

2 
C evaluated as 
n 

.2 • ''j'̂ oVn̂ n 
C f " (40) 

^ 2 
sin t L 

•' sin f a 
n 

Using Equation 23, we have 

1 ̂ 1 b 

° • Î " " i| J" •'"o 

(41) 

Integrating yields 

ic 
y 

V = - <«) 

Now that a. has been evaluated, the TE portion of the microstrip 
nn X -

fields can be found. The simplest field representation is in terms of 
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'itf". To find ilf, start with Equations 22. 
h n 

•tx • 5 " ± ? •ta (43) 

<'4> 

n "" """ n "" -^"^o âx^ 

where Equations 15 and 24 have been used. The solutions of Equations 27, 

28, and 29 can be numbered from 1 to » so that Equation 43 becomes 

+1 .2 . » 

Comparing with Equation 24 yields 

*h = i Vïn (45) 
n=l 

From Equations 25, 40, and 42, 

GO 

= +2j (Uji^cosk^y Z 

sint L —n 

t f sint (b-d)[ . " sinf xLl-u(x-a)j+sint (b-x)u(x-a)Je^ 
il il Tl S XXlX a n II 

n 

2 
2 2 C 1' 

(\ - + 2V„L-t„sin2t„Ll 

"" V (46) 

The TE^ part of the shielded microstrip fields is found by putting 

Equation 46 into Equations 24. 
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' B. TM Fields 
X 

The TM fields are related to a wave function \lf by 
X e 

2 

V = ^ . g® (") 

E -  ̂ "ze ° - 5̂  
ze J LUG dxôz y 

2 2 
where the subscript e indicates TM^ fields and k = cu p,^G with e = e(x). 

The procedure here will parallel the TE^ field analysis of section IV-A. 

The modal wave function that meets the required boundary conditions is 

cosq^L 

ilf- » D { cosp x[l-u(x-a)}fcosq_(b-x)u(x-a)}8ink ye (48) 
^en n cosp^a '^n n ' ' y 

where 

o o o o o 
(49) k^ 

y - Yn 
,2 = k^ = 

k^ 
y -v: 

,2 = k = 
o 

q^ + k^_ - = uT6_p,_ (50) 

p 

— tan p a = - — tan q^L (51) 
6 -, n 6 u 
1 o 

In the analysis below, the absence of a + superscript indicates the + 

wave. The TM modal fields are 
X 

\en - <52) 
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D k cosk y -cosq L -y z 

E = " ^ [ — p sinp x[l-u(x-a)]+q^sinq (b-x)u(x-a) }e ^ 
yen jiue cosp^a '^n '^n ^ ^n 

(53) 

-D Y -cosq L -y z 

\en ° l^r [ cost\ 

(54) 

"xen = » <55) 

Vn ° " ̂ n*en 

"zen " • V^V'en '") 

Note that and are zero at y = + n/ky. Since E^^, and 

are also zero at y = + n/k , the original assumption of putting conductors 
y 

at y = + Tf/ky is verified. From Equations 52, 53, 55, 56, and 15 we have 

? = T^(k^ - ̂ 2)2^0=^ Y 
en jtjje y 'n en x 

D k cosk y -cosq L 

+ " ^ ' cosp"a Pn=inPn*[l-"(*-*)]+4n'i"qa(b-x)u(x-a)):^ 

(58) 

"en ' • y J'' •en̂ y (̂ 9) 

D is chosen so that 
n 

rr "? xl? -a da = 6 (60) 
«JgJ en em z lun 

The integration indicated in Equation 60 is carried out in Appendix A 

2 
n 
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e^cos q^L 

0<y-Ŷ )Y„t{ (̂2ap̂ q+q̂ 8in2p__a)+2v„I*P„8i>'2V) 

e^cos p a 
1 '^n 

From Equation 23, 

a = - r J^E^ dv 
en 2 ̂  en 

, 1 ^1 b k "Y z 

= " *2 ^ J* J 6(x-d)6(z) D^q^ cos k^sinq^(b-d) e ^ dxdydz 

•^1 (62) 

Integrating yields, 

rrD q sinq (b-d) 

Sn = - ° <"> 

Proceeding as for the TE^ case, we have 

 ̂"en 4nx ' jh'fï *  ̂%n 
n=o •' ÔX n=o 

Comparing with Equation 47 yields 

n=o 

The sum starts with n = 0 so that there is a correspondence with the 

empty waveguide modes. Using Equations 48, 61, and 63 yields 

CO 

$— = 2k sink y Z 
y y n=o 

2 cosq^L 
p^q^s inq^(b-d)cosp^x[1-u(x-a) ]+cosq^(b-x)u(x-a)}e ^ 

A rnc  n  T .  

2^(2ap q^+q sin2p^a)+2q^p Lfp^sin2q^L) 

«1"» V (66) 
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The TM part of the shielded microstrip fields is found by putting 
X 

Equation 66 into Equations 47. 

C. The Total Shielded Microstrip Fields 

The total fields are the sum of the TM^ and TS^ fields. The procedure 

to get the shielded microstrip fields is to put Equations 46 and 66 into 

Equations 24 and 47, respectively, and add field components. 

The microstrip fields found here do not include the effect of a 

transverse current on the microstrip. However, the analysis used in this 

work could handle a transverse microstrip current. The effect would be in 

the modal amplitudes and not in the normal mode propagation properties. 

D. Some Checks of Results 

In this section, the results for the shielded microstrip will be 

checked with the stripline results by two limiting processes. However, 

before going on, consider the microstrip line as k^ 0. This takes the y 

dependence out of Tand the fields so that •^ = 0. A glance at Equations 

46, 66, and 24 shows that ill -• 0 as k -*0 and that the fields become 
e y 

both TE and TM . This justifies the former statement that a TM 
X y y 

solution was only possible if ̂  = 0. The two-dimensional TM^ solution 

for the shielded microstrip can be readily solved by bilateral Laplace 

transform method. The result checks with the analysis given in section 

IV-A. Perhaps the most interesting aspect of the y independent Laplace 

transform solution of the shielded microstrip is that there are no branch 

points in the inversion integral. This is not the case when b = » (13). 
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1. The shielded microstrip as a - 0 

As a — 0, and must approach the corresponding empty guide 

values given by Harrington (14). This results in 

t^ ^ n = 1,2,3, •• • (67) 

^ n = 0,1,2, • • • (68) 

These results check with Equations 29 and 51. From Equations 29 and 67, 

sint L t cost L 
R n n (69) 

ana 

Also, 

sinf a f cosf a 
n n n 

2 2 
sin t L t 

lira = -r (70) 

a-'O sin f a f 
n n 

sin ̂  (L-x) = (-l)^^^sin ̂  x (71) 

cos ̂  (L-x) = (-1)^ cos ̂  X (72) 

Putting the above equations into Equations 46 and 66 as a -• 0 yields 

TP 2 
. n- , . nrr -r ' n 

œ Sin — dsin — X e 
• ^ - + j m c o s k y  Z  ^  2  ( 7 3 )  

? n=i (kZ - r;)L 

and 

-Tn: 

wnere 

. 1111 J 111. • 
œ (—) Sin — dcos — X e 

4- - - k Sink y 2 — (74) 

(f)' -rl - (") 
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The n = 0 term is not included in Equation 74 because it is zero. An 

interesting aspect of the shielded microstrip line is that it excites the 

mode while the stripline does not. The physical reason for this 

difference is that the TM mode of the empty guide has E = 0 so that it 
xo ° yeo 

does not react with J*. The TM^^ mode of the slab guide has a non-zero y 

component of electric field. The fields of the stripline are found from 

Equations 73 and 74 by putting them into Equations 24 and 47, respectively, 

"J 
and adding the field components. The results, for T = a^6(x-d)6(z)e ^ , 

compares with the stripline fields of section III. 

2. The shielded microstrip as Gg 

Starting with Equations 27, 28, 49, and 50, it is seen that p^ ̂  q^ 

and f -* t ase,-»e. Equations 29 and 51 become 
n n 1 o 

cot t b cot t a + 1 

cot = - cot t_^(b - a) = A . cot°t a 
n n 

and 

tan q b + tan q a 

tan q^a = - tan - a) = - i + tan , b tan , a 
^n ^n 

The expected empty guide result is 

•în ° Pn " '=n - 'n ° ° \ 

This checks with Equation 76 and 77. From trigonometric identities, we 

have 

sin k^L = (-1)^^ sin k^a (79) 

nrvc V T. =a / —/ * r \ a  Ir A  
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sin 2k L = 2sin k L cos k L = - 2sin k a cos k a (81) 
X XX XX 

Putting the above identities in Equations 46 and 66 as yields 

— P z 
nr , . ITT — « n 

œ s i n  —  dsin- j —  x e  

cos ky? ^2 _p2 ̂  (*2) 

y n 

ana 

z 
I \ ' J Tl, : "T 

CO (—) sin " d cos — X e 
?r„^ 

' ,,2^2 ' (") 
y 

Since L = b in Equations 73 and 74, Equations 82 and 83 compare with the 

results of letting a -» 0. 
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V. THE OPEN MICROSTRIP 

The open microstrip configuration is shown in Figure i with b = <». 

Before going to the open system, we will consider some more aspects of 

the shielded microstrip. 

The normal mode wave functions for the TE and TM modes of the 
X X 

shielded microstrip structure are given by Equations 25 and 48, respec­

tively. These wave functions can be written in the form 

where the 0's contain the x dependence. and 0^^ are both solutions 

of Sturm-Liouville systems (13). These systems are 

(84) 

(85) 

(86) 

0 X = 0, b (87) 

(88) 

(89) 

Equations 86 and 88 are both of the form 

:&[P(x) 4^] + [XS(x) - Q(x)]u = 0 (90) 

where 

/01 \ 
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Qg = (92) 

e^(x) = e(x)/e^ (93) 

For the open microstrip, b = «. A boundary value problem of this 

type is called singular and x = b is called a singular point (18). 

Consider the limit of and as x -• œ. We have 

lim Q = lim Q, = Q = (94) 
^e h ^0 y o ^ ' 

X-^co x-«o •' 

The following conclusions concerning the spectrum of the boundary value 

2 2 
problem can be made (19, 20). For y > P < the TE^ and TM^ modal 

spectrum is discrete. The TE^ and TM^ modes form a continuous spectrum 

2 2 
for Y » P > When k^ = 0, the above conclusions compare with known 

results (13). 

We now consider the discrete spectrum in detail. The discrete 

spectrum should be proper (meets the radiation condition) (21). The 

radiation condition states that there can be no sources of radiation at 

infinity (17). This condition can be met by considering only the 

transverse propagation constants, k^^ = r+ js, that represent waves that 

decay with x in the region x > a. Tamir and Oliner (21) have stipulated 

the radiation condition as 

s = Im k^2 < 0 (95) 

In section IV, the fields for the shielded microstrip were found. 

Putting condition (95) into the shielded microstrip equations and letting 

b -• CO should result in the discrete spectrum for the open microstrip. The 

closed system characteristic equations are 
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f cot f a = - t cot t L (96) 
n n n n 

— tan p a tan q L (97) 
e, '^n e n 
1 o 

Let L = b- a-»œin Equations 96 and 97 and require that t^ and q^ 

meet condition (95). 

j (r+js)L -j(r+js)L 

lim cot k „L = liraj = j (98) 

L-«o ^ L-»ûo (i+js)L _ ^-j(r+js)L 

lim tan k = - j (99) 

L-oo 

Equations 96 and 97 become 

f cot f a = - u (100) 
n n n 

p w 
— tan p a = — (101) 
:l * e, 

where u = it and w = iq . Equations 100 and 101 are the characteristic 
n n n "^^n ^ 

equations for the discrete spectrum TE^ and TM^ open microstrip modes, 

respectively. These equations compare exactly with the characteristic 

equations for the y independent TE^ and TM^ surface wave modes for the 

grounded dielectric slab (13). We shall call the modes in the discrete spec­

trum of the open microstrip configuration surface wave modes. This desig­

nation does not completely align with the usual surface wave definition 

because we have k^ f 0. A glance at Equations 24 and 47 shows that our 

TE and TM modes become also TE and TM , respectively, when = 0. 
X X  z  z  • '  o y  

Brown (22) shows that solutions of Equations 100 and 101 exist only 

if t^ and q^ are pure imaginary. From condition (95), u^ > 0 and w^ > 0. 

Before proceeding, we need the following limits. 
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lin, . Un Slnhu<b-a) , ^u(b-aj_^-u(D-ct) ̂  

L-to ir\n sinhuL b-tn u(b-a) -u(b-a) 

Similarly, 

e -e 

(102) 

Um . ^-.(a-a) (103) 

L-» 

Also, 

lim .'^ = lim —= 0 (104) 
L-^ :°sqL 

lim ̂ iS|iî= - 2j = - lim 2iS|ai (105) 

L_to sin tL L-to cos qL 

lim sisaib^ . . (106) 
L-« cosqL 

lim . ̂-u(o;-a) (107) 
cosqL 

As b -• œ, the results of section IV for the shielded microstrip should 

pass over into the solution for the open microstrip (23). The limiting 

process may require losses in the system (24). Putting losses in the 

system is equivalent to meeting the radiation condition. In letting 

L -» « in the limits above, we have taken the radiation condition into 

account. Taking the limit in Equations 46 and 66, as L -• œ, results in 

the following wave functions for the discrete spectrum of the open 

microstrip. 
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—p z /, \ sinf >: -u (x-a) 

u f e' ^ e ^ :—::^[l-u(x-a) J+e u(.x-a) j 
^ n n sinr a 

'y'r = ±_ 2ul;m cosk y S 

° ^ n _ _ (-2ju f a-fju sin2f a) 
(,2.p2)( _iLn_J n_-.2jg 

sin f a 
n 

(108) 

„ T'^n^ -w (d-a) cosp x -w (x-a) 

p w"e'^ e ^ [ ^[l-u(x-a) ]+e ^ u(x-a)} 
^ n n cosp a 

= -2k sink y Z 

(ky-Yn)Yn[ 2 + 
•' s-cos p a 

1 n 

(109) 

where 

f^ + k^ - = k^ = p^ + k^ - (110) 
n y ' n 1 '^n y 'n 

- + k^ -P^ = k^ = - w^ + k^ - (111) 
n y 1 n o n y 'n 

In Appendix B, Equation 108, with k^ = 0, is shown to compare with other 

known results. The symbol/\ is used to denote the discrete spectrum. The 

sums on n indicated in Equations 108 and 109 are both over a finite number 

of terms. Although there may be no terms in the expansion for '<|f, , ù will 

be found to have at least one terra. 

Information about the propagation properties of the surface wave 

modes can be gained by considering a graphical method for finding the 

propagation constants (13). For the TE^^ modes. Equations 100, 110, and 

111 must be solved for f^, u^, and where n = 1, 3, •••. The numbering 

system is chosen to correspond with the odd TE^^ two-dimensional surface 
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waves. Subtracting Equation 111 from 110 yields 

(af)^ + (au)- = a^uf^^Ce^ - e^) = (ak^)^(T - 1) (112) 

where 

T = e^/e^ (113) 

Multiplying Equation 100 by a results in 

au = - af cot fa (114) 

For the modes. Equations 101, 110, and 111 must be solved for p , 

w^, and where n = 0, 2, . The numbering system corresponds with 

the even two-dimensional surface waves. Proceeding as above yields 

(ap)^ + (aw)^ = (ak^)^(T - 1) (115) 

aw = -^ tan pa (116) 

Equations 112, 114, 115, and 116 can be solved graphically as shown in 

Figure 5. In the plot, pa, fa, ua, and wa are measured on the same 

scales. Equations 112 and 115 are drawn as circles of radius k^a/^r - 1. 

The only valid solutions are for u > 0 and w > 0. For this reason, the 

plots of Equations 116 and 114 are drawn only in the first quadrant. The 

TM and TE curves could alternately be drawn along the (pa,fa) axis, 
xn xn 

However, the first two curves are sufficient to examine the theory. The 

straight line in Figure 5 will be discussed later. 

The frequency dependence of the discrete spectrum can be clearly 

explained with Figure 5. The radius of the circle is proportional to 

frequency. Even as œ 0, the circle intersects the TM^^ curve. The 

mode always exists and ac low frequencies it is the only mode in 

the discrete spectrum. For oj small, is small and positive. If 
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TM 
xo 

.n/4 

it/2 ff/4 

(fa, pa) 

Figure 5. Graphical solution for propagation constants 
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2 2 
e, > e , k > k because k /k = e where T > e > 1. When 
1 o y o y 0 effective efr 

2 
T = 2.65, % 2 (8). According to Equation 111, > 0 when w is 

2 2 2 
sufficiently small. As w increases, w^ and k^ - k^ => k^ ^®eff ~ 

2 2 
increase. For large w, w^ goes as k^(T-l) which can be expected to be at 

2 2 
least 1.2 k^ ^®eff ' (7)» At some u), y^ goes negative. We can conclude 

that although the mode always exists it does not propagate in the z 

direction until uj becomes sufficiently large. The frequency at which the 

TE 1 mode comes into existance is 
xl 

Tr/2 v V u) 
f = = 2— = ̂  (117) 

2TTa/T-l 4a/T-l " 

where 

'• • 

Although the TE^^ mode exists at lu = uj^, it does not propagate in the z 

direction until lo becomes sufficiently greater than 

The frequencies at which the TM and TE microstrip modes come 
xn xn 

into existence are the cutoff frequencies of the TM and TE , two-
zn zn 

dimensional, grounded dielectric slab modes. The two-dimensional surface 

waves always propagate in the z direction when u) > However, it was 

found above that this isn't the case for the open microstrip surface 

waves. 

The frequency at which the surface wave modes come into existence 

has been found graphically, A graphical method can also be used to 

determine the frequency at which the surface wave modes begin to propa­

gate. To develop the method, put and y^ equal to zero in Equations 111. 
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This results in 

(au^)^ = - k^) = (ak )2(G - 1) = (aw (119) 
n y o o err n 

Substituting Equations 119 into Equations 112 and 115 yields 

eft 

% ° Pn (121) 
eff 

A line representing both Equation 120 and Equation 121 is drawn in Figure 

5. This can be called the cutoff line. If the circle intersects the 

TM curve or the TE . curve above the cutoff line, the TM mode or the 
xo xl xo 

TE^^ mode propagates in the z direction. When the circle passed between 

point A-j^ and point A2 only the TM^^ mode propagates. In Figure 5, the 

cutoff line is drawn for T = 2.65. We have assumed that e __ is 
eff 

independent of frequency. This assumption is reasonable for T = 2.65 (8). 

However, actually increases toward T with frequency (7). This 

means that as the radius of the circle in Figure 5 increases the slope of 

the cutoff line increases. 
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VI. NUMERICAL RESULTS 

A. The Shielded Micros trip 

In section V, 0 (x) and 0 (x) were discussed as solutions of 
en nn 

Sturm-Liouville problems. The eigenvalues of the associated Sturm-

2 2 2 
Liouville problems are and p^. A variational expression for and 

2 
is developed by Collin (13). The variational expressions are 

^ 0 r 

o 

and 

r: = ' r; 
I »hn dx 
0 

The eigenvalues form the following monotonically increasing sequences. 

YQ < Yi < Y2 • * • < Yn (124) 

rï (I'z cr, ' ' ' cFn (125) 

0^^ and 0^^ are unknown because the propagation constants t^, f^, q^ and 

p are unknown. A suitable set of functions to use for the extremization 
n 

of Equations 122 and 123 are the empty guide eigenfunctions (13). The 

empty guide eigenfunctions are 

gen cos ̂  X n = 1,2,3 ••• (126) 

Sao " ("7) 
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ghn = sin 22. % n = 1,2,3 ••• (128) 

Substitution of g and g, for 0 and 0, in Equations 122 and 123 
en hn en nn 

2 2 
yields an upper bound for the true eigenvalues andf^. Equations 122 

2 2 
and 123 can be expected to give good approximations for and p^, 

especially when does not differ greatly from (14). This method can 

also be used to find approximations for the higher order eigenvalues. 

However, the accuracy of the approximation is questionable (25). The 

results of putting Equations 126, 127, and 128 into Equations 122 and 

123 are 

2 - 2 
V„-- 1 (129) 

^0- + ^ 

- (1 - ̂ )(§ -

Y + (130) 
'n y 

2nn 
e sin a 

n - 1,2.3. 

. 2n7T 
0 0 0 0 G sin -r- a 

l'a = ky + <f > - - (1 - r> % - j <131) 

0 

n = 1,2,3 

As a numerical example consider the shielded microstrip with 

d = a = .127 X 10 ̂  m 

b = 10 a 

e./s = T = 4.2 
1 o 
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f = 2 GKz 

Using the results of Zysman and Varon (8), we have ss 1.7 k^. The 

results of using Equations 129, 130 and 131 are « 56.1, % 253, and 

% 273. 

Consider another example with everything the same as above except 

with T - 2.65. For this case, k^ % 1.42 k^. The propagation constants 

are found to be y^ % 40.5, « 258, y^ % 266 and % 497. Since 

does not differ greatly from e^, it is expected that Equations 130 and 131 

give reasonably accurate results for and P^. From Equations 27, 28, 

49 and 50, it is found that q^ « - jlO.95, p^ « 52.6, q^ % 262, % 268, 

t^ % 254, and f^ % 260. Letting a = d and putting Equations 46 and 66 

into Equations 24 and 47, respectively, results in the following fields. 

Eyg^(a, 0, z) «1.36 (132) 

E , ̂ (a, 0, z) « - j 310e"258z (133) 

Eyeifa, 0, z) «j 403e"266z (134) 

Let 

1e (a,0,z) + E (a,0,z)| 

e  =  — ^ ^  ( 1 3 5 )  

|Eyhi(a,0,0) + Ey2i(a,0,0)| 

In Figure 6, 0 versus z/a is plotted. The higher order modal fields 

are expected to decay, with z, at least as fast as the TE^^ mode. Since 

w 467 and y^, .52 the plot of Figure 6 should be a reasonable 

approximation for the total microstrip field decay when z/a > 3. 
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0 

d  =a  =  ,127  X10  m 

b = 10a 
9  

8 

7  f  =  2  GHz  

6 

A  

2 

.2 

0 
0 2 3  5  6 7  4  8 

z/a 

Figure 6. Normalized E versus distance from the conductor 
y 
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B. The Open Microstrip 

Consider an open microstrip transmission line with f = 10 GHz, 

T = e^/e^=2.65, and a = .127 x 10 ̂ m. For this line, ça/l (8). 

The graphical method discussed in section V can be used to determine the 

surface waves associated with the microstrip and the propagation 

constants. We have 

a k / T -  l  =  a  —  / T -  1 =  . 3 4 2  

Using Figure 5, it is seen that the discrete spectrum consists only of 

the TM mode. Also, we find that w « 41.3. v can be found by using X O  O  '  O  J O  

Equation 111. The resuli: is 

Y  = /- w^ + k^ - k^ = /- + k^ = 205. 
^o o y o o o 

The TM^^ mode does not propagate in the z direction at f = 10 GHz. By 

trial and error, it was found that the frequency where propagation in 

the z direction begins for the TM^^ mode is about 61.5 GH^. This agrees 

with the theory of section V. 
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VII. SUMMARY AND CONCLUSION 

The electromagnetic fields of the shielded microstrip transmission 

line have been found in terms of the normal modes of the dielectric slab 

waveguide. A method of summing the modes propagating transverse to the 

conductor is used to find the field representation. To check the solu­

tion, two separate limiting processes are shown to reduce the shielded 

microstrip transmission line to the stripline configuration. 

The discrete modal spectrum of the open microstrip transmission line 

is studied in detail. These modes are found to be a three-dimensional 

generalization of well-known two-dimensional surface waves. It is shown 

that the microstrip surface waves can exist without propagating away from 

the conductor. A graphical method is developed to determine the existence 

and the propagation properties of the surface wave modes associated with 

the microstrip line. It is found that predictions based on a two-dimen­

sional surface wave analysis may be erroneous. A TM mode is found to 

exist on the microstrip at all frequencies. 
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X. APPENDIX A 

We want to evaluate of Equation 25. From Equation 39, is 

chosen so that 

where and h^^ are given by Equations 37 and 38, respectively. 

Substituting into Equation 136 yields 

^1 b r (p^-k^)cos^k y sin^t L „ 

J J ^ tT^f: 
-y, 0 "^0 sin r a 
^1 n 

+ sin^t^(b-x)u(x-a) }dxdy = 1 (137) 

where y^^ = n/k^. Performing the integration, we have 

TT(r^-k^)n sin^t L sin2f a sin2t L 

• ' y ^ o  s  i n  f a  n  n  
•' n 

2 
The result of solving for is 

,2 -4i%Vn^n 
r : ; " y " " (139) 

^ ,5 sin t L 
n(k -p )ttÎ T-^(2t f a-t sin2f a)+2t f L-f sin2t L 
I n ^  y ' n  .  2 ^  n n  n  n  n n  n  n  

•' sin f a 
n 

of Equation 48 must also be evaluated. From Equation 60, is chosen 

so that 

rr ? X h «â'da = 1 (140) 
J J en en z g en en z 

_ —^ 
where e^^ and h^^ are given by Equations 58 and 59. Substituting into 

Equation 140 yields 
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V 2 ? 2 2 2 
1 b (k -v )Y D sin k y cos q L 
I I ' 2' c.s\4l.u(x.a)] 

COS p a 
-y^ 0 n 

Integrating, we have 

2 
+cosq^(b-x)u(x-a)}dxdy = 1 (141) 

2 2 2 2 
i(k -Y sY D ~ cos q L sin2p a ^ sin2q L 

n + (142) 

y e^cos p a n o no 
•' 1 f^n 

2 
Solving for yields 

2 -
D = 
n 2 

2 2 G cos q L 

^ G^cos p^a 

(143) 
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XI. APPENDIX B 

/Vf 
The purpose of this appendix is to compare of Equation 108 with 

other known results. For the case when = 0, Collin (13) gives 

for X s a as 

Residues (144) 

where 

N(r) = (u-fcotfa)e""(*+^"2a)e-rz (145) 

M(P) = -ju(uffcotfa) (146) 

-ju = (P^+k^)"^ (147) 

f = (P^+k^)^ (148) 

The zeros of M(P) are of first order and lie on the imaginary axis of the 

P-plane between jk^ and jk (13). From Equation 146, it is seen that the 

zeros of M(r) are the solutions of Equation 100. The following formula 

will be used to find the residues (16). 

Residue i^. T' TJ = ^ 

» i n  d p  

(149) 

We have, 

df r 

dP ̂  f 



www.manaraa.com

47 

^ - p[2j+juacsc^fa-j ~ cotfafj ̂  cotfa} (152) 

Using Equations 100 and 149 yields 

-u (x-a) -u (d-a) -Pz 
, _ n^ n In 

rf/n\ - 4u f e e e 

Residue [Mm, r- S-5 (153) 

u sin2f a - 2u f a 
. n_ twL. . 2fJ 

sin f a 
n 

The result of substituting Equation 153 into Equation 144 is 

-u (x-a) -u (d-a) -Pz 
^ n n In 

u f e e e 

•E" . 2jm £ (154) 

^ n u sin2f a-2u f a 

. 2 .  
sin r a 

n 

This checks with the solution in section V when = 0 and x ̂  a. 
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